Mechatronics Research Lab Publications
List still being populated due to webpage maintenance
2021

Fangzhou Xia; James Quigley; Xiaotong Zhang; Chen Yang; Yi Wang; Kamal Youcef-Toumi
A modular low-cost atomic force microscope for precision mechatronics education Journal Article
In: Mechatronics, vol. 76, pp. 102550, 2021, ISSN: 0957-4158.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling
@article{MRL_AFM_Low_cost_AFM,
title = {A modular low-cost atomic force microscope for precision mechatronics education},
author = {Fangzhou Xia and James Quigley and Xiaotong Zhang and Chen Yang and Yi Wang and Kamal Youcef-Toumi},
url = {https://www.sciencedirect.com/science/article/pii/S0957415821000441},
doi = {https://doi.org/10.1016/j.mechatronics.2021.102550},
issn = {0957-4158},
year = {2021},
date = {2021-04-15},
journal = {Mechatronics},
volume = {76},
pages = {102550},
publisher = {ScienceDirect},
abstract = {Precision mechatronics and nanotechnology communities can both benefit from a course centered around an Atomic Force Microscope (AFM). Developing an AFM can provide precision mechatronics engineers with a valuable multidisciplinary hands-on training experience. In return, such expertise can be applied to the design and implementation of new precision instruments, which helps nanotechnology researchers make new scientific discoveries. However, existing AFMs are not suitable for mechatronics education due to their different original design intentions. Therefore, we address this challenge by developing an AFM intended for precision mechatronics education. This paper presents the design and implementation of an educational AFM and its corresponding precision mechatronics class. The modular educational AFM is low-cost (≤$4,000) and easy to operate. The cost reduction is enabled by new subsystem development of a buzzer-actuated scanner and demodulation electronics designed to interface with a myRIO data acquisition system. Moreover, the use of an active cantilever probe with piezoresistive sensing and thermomechanical actuation significantly reduced experiment setup overhead with improved operational safety. In the end, the developed AFM capabilities are demonstrated with imaging results. The paper also showcases the course design centered around selected subsystems. The new AFM design allows scientific-method-based learning, maximizes utilization of existing resources, and offers potential subsystem upgrades for high-end research applications. The presented instrument and course can help connect members of both the AFM and the mechatronics communities to further develop advanced techniques for new applications.},
keywords = {Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling},
pubstate = {published},
tppubtype = {article}
}
2020

Chen Yang; Nicolas Verbeek; Fangzhou Xia; Yi Wang; Kamal Youcef-Toumi
Modeling and Control of Piezoelectric Hysteresis: A Polynomial-Based Fractional Order Disturbance Compensation Approach Journal Article
In: IEEE Transactions on Industrial Electronics, 2020, ISSN: 1557-9948.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation
@article{MRL_AFM_Charge_Controller_PBFODC,
title = {Modeling and Control of Piezoelectric Hysteresis: A Polynomial-Based Fractional Order Disturbance Compensation Approach},
author = {Chen Yang and Nicolas Verbeek and Fangzhou Xia and Yi Wang and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/9027124},
doi = {10.1109/TIE.2020.2977567},
issn = {1557-9948},
year = {2020},
date = {2020-03-06},
journal = {IEEE Transactions on Industrial Electronics},
publisher = {IEEE},
abstract = {Piezoelectric hysteresis is a critical issue that significantly degrades the motion accuracy of piezo-actuated nanopositioners. Such an issue is difficult to be precisely modeled and compensated for, primarily due to its asymmetric, rate and input amplitude dependent characteristics. This paper proposes a novel method to deal with this challenge. Specifically, a polynomial-based fractional order disturbance model is proposed to accommodate and characterize the complex hysteresis effect. In this model, the rate dependency is captured by a general method of implementing curve fitting in Bode magnitude plot. The inverse model for control purposes is immediately available from the original one. The proposed method does not require expensive computational resources. In fact, this paper shows that this controller can be easily implemented in an analog manner, which brings the advantages of high-bandwidth and low-cost. Extensive modeling and tracking experiments are carried out to demonstrate the effectiveness of the proposed method. It is shown that the piezoelectric hysteresis nonlinearity can be significantly suppressed over a wide bandwidth.},
keywords = {Control Theory, Experimentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {article}
}

Kevin Vanslette; Abdullatif Al Alsheikh; Kamal Youcef-Toumi
Why simple quadrature is just as good as Monte Carlo Journal Article
In: Monte Carlo Methods and Applications, vol. 26, no. 1, pp. 1–16, 2020, ISSN: 1569-3961.
Abstract | Links | BibTeX | Tags: Computational Intelligence, Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Simulation
@article{MRL_AFM_Quadrature_Monte_Carlo,
title = {Why simple quadrature is just as good as Monte Carlo},
author = {Kevin Vanslette and Abdullatif Al Alsheikh and Kamal Youcef-Toumi},
url = {http://dx.doi.org/10.1515/mcma-2020-2055},
doi = {10.1515/mcma-2020-2055},
issn = {1569-3961},
year = {2020},
date = {2020-03-01},
journal = {Monte Carlo Methods and Applications},
volume = {26},
number = {1},
pages = {1–16},
publisher = {Walter de Gruyter GmbH},
abstract = {We motive and calculate Newton–Cotes quadrature integration variance and compare it directly with Monte Carlo (MC) integration variance. We find an equivalence between deterministic quadrature sampling and random MC sampling by noting that MC random sampling is statistically indistinguishable from a method that uses deterministic sampling on a randomly shuffled (permuted) function. We use this statistical equivalence to regularize the form of permissible Bayesian quadrature integration priors such that they are guaranteed to be objectively comparable with MC. This leads to the proof that simple quadrature methods have expected variances that are less than or equal to their corresponding theoretical MC integration variances. Separately, using Bayesian probability theory, we find that the theoretical standard deviations of the unbiased errors of simple Newton–Cotes composite quadrature integrations improve over their worst case errors by an extra dimension independent factor ∝ N−1/2 This dimension independent factor is validated in our simulations.},
keywords = {Computational Intelligence, Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Simulation},
pubstate = {published},
tppubtype = {article}
}
2019

Juan Heredia; Jonathan Tirado; Vladislav Panov; Miguel Altamirano Cabrera; Kamal Youcef-Toumi; Dzmitry Tsetserukou
RecyGlide: A Forearm-Worn Multi-Modal Haptic Display Aimed to Improve User VR Immersion Submission Proceedings Article
In: 25th ACM Symposium on Virtual Reality Software and Technology, pp. 1-2, Association for Computing Machinery, 2019, ISBN: 9781450370011.
Abstract | Links | BibTeX | Tags: Computational Intelligence, Control Theory, Data-driven learning for intelligent machine maintenance, Experimentation, intelligent systems, Mechatronic Design, Simulation, Visualization
@inproceedings{MRL_AFM_VR_Multi_Modal_Display,
title = {RecyGlide: A Forearm-Worn Multi-Modal Haptic Display Aimed to Improve User VR Immersion Submission},
author = {Juan Heredia and Jonathan Tirado and Vladislav Panov and Miguel Altamirano Cabrera and Kamal Youcef-Toumi and Dzmitry Tsetserukou},
url = {https://doi.org/10.1145/3359996.3364759},
doi = {10.1145/3359996.3364759},
isbn = {9781450370011},
year = {2019},
date = {2019-11-01},
booktitle = {25th ACM Symposium on Virtual Reality Software and Technology},
pages = {1-2},
publisher = {Association for Computing Machinery},
abstract = {Haptic devices have been employed to immerse users in VR environments. In particular, hand and finger haptic devices have been deeply developed. However, this type of devices occludes hand detection for some tracking systems, or, for some other tracking systems, it is uncomfortable for the users to wear two different devices (haptic and tracking device) on both hands. We introduce RecyGlide, a novel wearable multimodal display located at the forearm. The RecyGlide is composed of inverted five-bar linkages with 2 degrees of freedom (DoF) and vibration motors (see Fig. 1.(a). The device provides multimodal tactile feedback such as slippage, force vector, pressure, and vibration. We tested the discrimination ability of monomodal and multimodal stimuli patterns on the forearm and confirmed that the multimodal patterns have higher recognition rate. This haptic device was used in VR applications, and we proved that it enhances VR experience and makes it more interactive.},
keywords = {Computational Intelligence, Control Theory, Data-driven learning for intelligent machine maintenance, Experimentation, intelligent systems, Mechatronic Design, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

Kevin Vanslette; Tony Tohme; Kamal Youcef-Toumi
A general model validation and testing tool Journal Article
In: Reliability Engineering & System Safety, vol. 195, pp. 106684, 2019, ISSN: 0951-8320.
Abstract | Links | BibTeX | Tags: Algorithms, Computational Intelligence, Control Theory, Experimentation, intelligent systems, Probabilistic neural networks for robust machine learning, Simulation
@article{MRL_Model_Validation_Testing,
title = {A general model validation and testing tool},
author = {Kevin Vanslette and Tony Tohme and Kamal Youcef-Toumi},
url = {https://www.sciencedirect.com/science/article/pii/S0951832019302571},
doi = {https://doi.org/10.1016/j.ress.2019.106684},
issn = {0951-8320},
year = {2019},
date = {2019-10-28},
journal = {Reliability Engineering & System Safety},
volume = {195},
pages = {106684},
publisher = {Elsevier BV},
abstract = {We construct and propose the “Bayesian Validation Metric” (BVM) as a general model validation and testing tool. We find the BVM to be capable of representing all of the standard validation metrics (square error, reliability, probability of agreement, frequentist, area, probability density comparison, statistical hypothesis testing, and Bayesian model testing) as special cases and find that it can be used to improve, generalize, or further quantify their uncertainties. Thus, the BVM allows us to assess the similarities and differences between existing validation metrics in a new light. The BVM has the capacity to allow users to invent and select models according to novel validation requirements. We formulate and test a few novel compound validation metrics that improve upon other validation metrics in the literature. Further, we construct the BVM Ratio for the purpose of quantifying model selection under user defined definitions of agreement in the presence or absence of uncertainty. This construction generalizes the Bayesian model testing framework.},
keywords = {Algorithms, Computational Intelligence, Control Theory, Experimentation, intelligent systems, Probabilistic neural networks for robust machine learning, Simulation},
pubstate = {published},
tppubtype = {article}
}

Chen Yang; Fangzhou Xia; Yi Wang; Stephen Truncale; Kamal Youcef-Toumi
Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure Proceedings Article
In: 2019 American Control Conference (ACC), pp. 3782–3788, IEEE IEEE, 2019, ISBN: 978-1-5386-7926-5.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Simulation
@inproceedings{MRL_AFM_Stacked_Nanopositioner,
title = {Design and Control of a Multi-Actuated Nanopositioning Stage with Stacked Structure},
author = {Chen Yang and Fangzhou Xia and Yi Wang and Stephen Truncale and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8815299},
doi = {10.23919/ACC.2019.8815299},
isbn = {978-1-5386-7926-5},
year = {2019},
date = {2019-08-29},
booktitle = {2019 American Control Conference (ACC)},
pages = {3782--3788},
publisher = {IEEE},
organization = {IEEE},
abstract = {A novel multi-actuated nanopositioning stage with stacked structure has been developed. The aim is to achieve both high bandwidth and large motion range. Symmetric flexures are designed to obtain equal stiffness along any direction in the lateral plane. With this design, the lateral stiffness and corresponding bending mode resonance frequency can be optimized. Both analytical model and finite element analysis are employed to predict the dominant resonance frequency. Experimental results indicate that the dominant resonance of nanopositioner is at 28.2 kHz, with a motion range of 16.5J.1m. A disturbance-observer-based controller is implemented to suppress the hysteretic nonlinearity. The new design and control system enable high-bandwidth and high-precision nanopositioning up to 2 kHz.},
keywords = {Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}

Erik Gest; Mikio Furokawa; Takayuki Hirano; Kamal Youcef-Toumi
Design of Versatile and Low-Cost Shaft Sensor for Health Monitoring Proceedings Article
In: pp. 1926-1932, IEEE IEEE, 2019, ISBN: 978-1-5386-6027-0.
Abstract | Links | BibTeX | Tags: Control Theory, Data-driven learning for intelligent machine maintenance, Experimentation, Fabrication, Instrumentation, intelligent systems, Physical System Modeling, Simulation
@inproceedings{MRL_AFM_Shaft_Sensor_Health_Monitoring,
title = {Design of Versatile and Low-Cost Shaft Sensor for Health Monitoring},
author = {Erik Gest and Mikio Furokawa and Takayuki Hirano and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8794408},
doi = {10.1109/ICRA.2019.8794408},
isbn = {978-1-5386-6027-0},
year = {2019},
date = {2019-08-12},
pages = {1926-1932},
publisher = {IEEE},
organization = {IEEE},
abstract = {Virtually every mechanized form of transportation, power generation system, industrial equipment, and robotic system has rotating shafts. As the shaft is often the main means of mechanical power transmission, measuring the torque, speed, vibration, and bending of the shaft can be used in many cases to access device performance and health and to implement controls. This paper proposes a shaft sensor that measures all of these phenomena with reasonable accuracy while having a low cost and simple installation process. This sensor transfers strain from the shaft and amplifies it to increase sensitivity. Furthermore, this sensor requires no components to be in the stationary reference frame, allowing the entire device to rotate with the shaft. A prototype is presented. Experimental results illustrate the effectiveness of the proposed system.},
keywords = {Control Theory, Data-driven learning for intelligent machine maintenance, Experimentation, Fabrication, Instrumentation, intelligent systems, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}

Ishara Paranawithana; Zhong Hoo Chau; Liangjing Yang; Zhong Chen; Kamal Youcef-Toumi; U-Xuan Tan
Automatic Targeting of Plant Cells via Cell Segmentation and Robust Scene-Adaptive Tracking Proceedings Article
In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7116-7122, IEEE IEEE, 2019, ISBN: 978-1-5386-6027-0.
Abstract | Links | BibTeX | Tags: Algorithms, Biological device for cancer cell characterization, Computational Intelligence, Experimentation, Mechatronic Design, Nanotechnology, Visualization
@inproceedings{MRL_AFM_Cell_Segment_Targeting,
title = {Automatic Targeting of Plant Cells via Cell Segmentation and Robust Scene-Adaptive Tracking},
author = {Ishara Paranawithana and Zhong Hoo Chau and Liangjing Yang and Zhong Chen and Kamal Youcef-Toumi and U-Xuan Tan},
url = {https://ieeexplore.ieee.org/document/8793944},
doi = {10.1109/ICRA.2019.8793944},
isbn = {978-1-5386-6027-0},
year = {2019},
date = {2019-08-12},
booktitle = {2019 International Conference on Robotics and Automation (ICRA)},
pages = {7116-7122},
publisher = {IEEE},
organization = {IEEE},
abstract = {Automatic targeting of plant cells to perform tasks like extraction of chloroplast is often desired in the study of plant biology. Hence, this paper proposes an improved cell segmentation method combined with a robust tracking algorithm for vision-guided micromanipulation in plant cells. The objective of this work is to develop an automatic plant cell detection and localization technique to complete the automated workflow for plant cell manipulation. The complex structural properties of plant cells make both segmentation of cells and visual tracking of the microneedle immensely challenging, unlike single animal cell applications. Thus, an improved version of watershed segmentation with adaptive thresholding is proposed to detect the plant cells without the need for staining of the cells or additional tedious preparations. To manipulate the needle to reach the identified centroid of the cells, tracking of the needle tip is required. Visual and motion information from two data sources namely, template tracking and projected manipulator trajectory are combined using score-based normalized weighted averaging to continuously track the microneedle. The selection of trackers is influenced by their complementary nature as the former and latter are individually robust against physical and visual uncertainties, respectively. Experimental results validate the effectiveness of the proposed method by detecting plant cell centroids accurately, tracking the microneedle constantly and reaching the plant cell of interest despite the presence of visual disturbances.},
keywords = {Algorithms, Biological device for cancer cell characterization, Computational Intelligence, Experimentation, Mechatronic Design, Nanotechnology, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

Fangzhou Xia; Chen Yang; Yi Wang; Kamal Youcef-Toumi; Christoph Reuter; Tzvetan Ivanov; Mathias Holz; Ivo W Rangelow
Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes Journal Article
In: Nanomaterials, vol. 9, no. 7, pp. 1013, 2019.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Full text available online, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Visualization
@article{MRL_AFM_coated_probe,
title = {Lights Out! Nano-Scale Topography Imaging of Sample Surface in Opaque Liquid Environments with Coated Active Cantilever Probes},
author = {Fangzhou Xia and Chen Yang and Yi Wang and Kamal Youcef-Toumi and Christoph Reuter and Tzvetan Ivanov and Mathias Holz and Ivo W Rangelow},
url = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669515/},
doi = {10.3390/nano9071013},
year = {2019},
date = {2019-07-09},
journal = {Nanomaterials},
volume = {9},
number = {7},
pages = {1013},
publisher = {Multidisciplinary Digital Publishing Institute},
abstract = {Atomic force microscopy is a powerful topography imaging method used widely in nanoscale metrology and manipulation. A conventional Atomic Force Microscope (AFM) utilizes an optical lever system typically composed of a laser source, lenses and a four quadrant photodetector to amplify and measure the deflection of the cantilever probe. This optical method for deflection sensing limits the capability of AFM to obtaining images in transparent environments only. In addition, tapping mode imaging in liquid environments with transparent sample chamber can be difficult for laser-probe alignment due to multiple different refraction indices of materials. Spurious structure resonance can be excited from piezo actuator excitation. Photothermal actuation resolves the resonance confusion but makes optical setup more complicated. In this paper, we present the design and fabrication method of coated active scanning probes with piezoresistive deflection sensing, thermomechanical actuation and thin photoresist polymer surface coating. The newly developed probes are capable of conducting topography imaging in opaque liquids without the need of an optical system. The selected coating can withstand harsh chemical environments with high acidity (e.g., 35% sulfuric acid). The probes are operated in various opaque liquid environments with a custom designed AFM system to demonstrate the imaging performance. The development of coated active probes opens up possibilities for observing samples in their native environments.},
keywords = {Experimentation, Fabrication, Full text available online, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Visualization},
pubstate = {published},
tppubtype = {article}
}

Kevin Vanslette; Arwa Alanqari; Zeyad Al-awwad; Kamal Youcef-Toumi
Vectorized Uncertainty Propagation and Input Probability Sensitivity Analysis Journal Article
In: 2019.
Abstract | Links | BibTeX | Tags: Algorithms, Computational Intelligence, Experimentation, Uncertainty estimation and calibration for modeling
@article{MRL_AFM_Vectorized_Uncertainty_Input_Probability,
title = {Vectorized Uncertainty Propagation and Input Probability Sensitivity Analysis},
author = {Kevin Vanslette and Arwa Alanqari and Zeyad Al-awwad and Kamal Youcef-Toumi},
url = {https://arxiv.org/abs/1908.11246},
doi = {1908.11246v1},
year = {2019},
date = {2019-06-04},
publisher = {King Abdulaziz City for Science and Technology},
abstract = {In this article we construct a theoretical and computational process for assessing Input Probability Sensitivity Analysis (IPSA) using a Graphics Processing Unit (GPU) enabled technique called Vectorized Uncertainty
Propagation (VUP). VUP propagates probability distributions through
a parametric computational model in a way that’s computational time
complexity grows sublinearly in the number of distinct propagated input probability distributions. VUP can therefore be used to efficiently
implement IPSA, which estimates a model’s probabilistic sensitivity to
measurement and parametric uncertainty over each relevant measurement
location. Theory and simulation illustrate the effectiveness of these methods.},
keywords = {Algorithms, Computational Intelligence, Experimentation, Uncertainty estimation and calibration for modeling},
pubstate = {published},
tppubtype = {article}
}
Propagation (VUP). VUP propagates probability distributions through
a parametric computational model in a way that’s computational time
complexity grows sublinearly in the number of distinct propagated input probability distributions. VUP can therefore be used to efficiently
implement IPSA, which estimates a model’s probabilistic sensitivity to
measurement and parametric uncertainty over each relevant measurement
location. Theory and simulation illustrate the effectiveness of these methods.

Ali Jahanian; Quang H Le; Kamal Youcef-Toumi; Dzmitry Tsetserukou
See the E-Waste! Training Visual Intelligence to See Dense Circuit Boards for Recycling Proceedings Article
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2019.
Abstract | Links | BibTeX | Tags: Algorithms, Automated cellphone recycling, Computational Intelligence, Experimentation, Mechatronic Design, Robotics & Automation, Visualization
@inproceedings{MRL_AFM_Training_CB_Recycling,
title = {See the E-Waste! Training Visual Intelligence to See Dense Circuit Boards for Recycling},
author = {Ali Jahanian and Quang H Le and Kamal Youcef-Toumi and Dzmitry Tsetserukou},
url = {https://openaccess.thecvf.com/content_CVPRW_2019/html/cv4gc/Jahanian_See_the_E-Waste_Training_Visual_Intelligence_to_See_Dense_Circuit_CVPRW_2019_paper.html},
year = {2019},
date = {2019-06-01},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
abstract = {The state-of-the-art semantic segmentation and object detection deep learning models are taking the leap to generalize and leverage automation, but have yet to be useful in real-world tasks such as those in dense circuit board robotic manipulation. Consider a cellphone circuit board that because of small components and a couple of hundred microns gaps between them challenges any manipulation task. For effective automation and robotics usage in manufacturing, we tackle this problem by building a convolutional neural networks optimized for multi-task learning of instance semantic segmentation and detection while accounting for crisp boundaries of small components inside dense boards. We explore the feature learning mechanism, and add the auxiliary task of boundary detection to encourage the network to learn the objects' geometric properties along with the other objectives. We examine the performance of the networks in the visual tasks (separately and all together), and the extent of generalization on the recycling phone dataset. Our network outperformed the state-of-the-art in the visual tasks while maintaining the high speed of computation. To facilitate this globally concerning topic, we provide a benchmark for Ewaste visual tasks research, and publicize our collected dataset and code, as well as demos on our in-lab robot at https://github.com/MIT-MRL/recybot. pubstate = published},
keywords = {Algorithms, Automated cellphone recycling, Computational Intelligence, Experimentation, Mechatronic Design, Robotics & Automation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}
2018

Chen Yang; Changle Li; Fangzhou Xia; Yanhe Zhu; Jie Zhao; Kamal Youcef-Toumi
Charge Controller With Decoupled and Self-Compensating Configurations for Linear Operation of Piezoelectric Actuators in a Wide Bandwidth Journal Article
In: IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5392–5402, 2018.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation
@article{MRL_AFM_Charge_Controller_Self_Compensating,
title = {Charge Controller With Decoupled and Self-Compensating Configurations for Linear Operation of Piezoelectric Actuators in a Wide Bandwidth},
author = {Chen Yang and Changle Li and Fangzhou Xia and Yanhe Zhu and Jie Zhao and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8466119},
doi = {10.1109/TIE.2018.2868321},
year = {2018},
date = {2018-09-14},
journal = {IEEE Transactions on Industrial Electronics},
volume = {66},
number = {7},
pages = {5392--5402},
publisher = {IEEE},
abstract = {Charge control is a well-known sensorless approach to operate piezoelectric actuators, which has been proposed for more than 30 years. However, it is rarely used in industry because the implemented controllers suffer from the issues of limited low-frequency performance, long settling time, floating-load, and loss of stroke, etc. In this paper, a novel controller circuit dedicated to overcome these issues is presented. In the proposed scheme, a grounded-load charge controller with decoupled configuration is developed, which separates high-frequency and low-frequency paths, thus achieving arbitrarily low transition frequency without increasing the settling time. Based on this, a self-compensating configuration is further proposed and integrated into the controller circuit, which makes full use of controller output to improve its own control performance at low frequencies. Experimental results show that the presented charge controller can effectively reduce more than 88% of the hysteretic nonlinearity even when operating close to the transition frequency. To demonstrate its practical value, we then integrate it into a custom-designed high-speed atomic force microscope system. By comparing images obtained from using voltage drive and charge controller, it is clear that the piezoelectric hysteresis has been significantly reduced in a wide bandwidth.},
keywords = {Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {article}
}

Fangzhou Xia; Stephen Truncale; Yi Wang; Kamal Youcef-Toumi
Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy Proceedings Article
In: 2018 Annual American Control Conference (ACC), pp. 4330–4335, IEEE IEEE, 2018.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation
@inproceedings{MRL_AFM_Dual_Actuated_Scanner,
title = {Design and Control of a Multi-actuated High-bandwidth and Large-range Scanner for Atomic Force Microscopy},
author = {Fangzhou Xia and Stephen Truncale and Yi Wang and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/8431801},
doi = {10.23919/ACC.2018.8431801},
year = {2018},
date = {2018-08-16},
booktitle = {2018 Annual American Control Conference (ACC)},
pages = {4330--4335},
publisher = {IEEE},
organization = {IEEE},
abstract = {Atomic force microscopes (AFMs) with high-speed and large-range capabilities open up possibilities for many new applications. It is desirable to have a large scanning range along with zooming ability to obtain high resolution and high frame-rate imaging. Such capabilities will increase the imaging throughput and allow more sophisticated observations at the nanoscale. Unfortunately, in-plane scanning of conventional piezo tube scanners typically covers a large range of hundreds of microns but has limited bandwidth up to several hundred Hertz. The main focus of this paper is the multi-actuated piezo scanner design and control algorithm to achieve high-speed tracking. Three design strategies for structure bandwidth and operational range consideration are presented and evaluated. The non-linear hysteresis effect of the piezo actuators is modeled using the Preisach hysteresis model. PID control, iterative learning control and repetitive control strategies were investigated in simulation. Based on the controllers performance, the repetitive controller is implemented on a high-speed FPGA device and experimentally verified. The new AFM scanner design is capable of 10 kHz tracking at 3 μm range and 200 Hz tracking at 100 μm range.},
keywords = {Control Theory, Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}
2017

Fangzhou Xia; Iman Soltani Bozchalooi; Kamal Youcef-Toumi
Induced Vibration Contact Detection for Minimizing Cantilever Tip-Sample Interaction Forces in Jumping Mode Atomic Force Microscopy Proceedings Article
In: 2017 American Control Conference (ACC), pp. 4141–4146, IEEE IEEE, 2017, ISBN: 978-1-5090-5992-8.
Abstract | Links | BibTeX | Tags: Algorithms, Control Theory, Experimentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation
@inproceedings{MRL_AFM_IVCD,
title = {Induced Vibration Contact Detection for Minimizing Cantilever Tip-Sample Interaction Forces in Jumping Mode Atomic Force Microscopy},
author = {Fangzhou Xia and Iman Soltani Bozchalooi and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/7963591},
doi = {10.23919/ACC.2017.7963591},
isbn = {978-1-5090-5992-8},
year = {2017},
date = {2017-07-03},
booktitle = {2017 American Control Conference (ACC)},
pages = {4141--4146},
publisher = {IEEE},
organization = {IEEE},
abstract = {Minimizing tip-sample interaction force is crucial for the performance of atomic force microscopes when imaging delicate samples. Conventional methods based on jumping mode such as peak force tapping require a prescribed maximum interaction force to detect tip-sample contact. However, due to the presence of drag forces (in aqueous environments), noises and cantilever dynamics, the minimal detectable peak force can be large. This results in large tip-sample interaction forces and hence sample damage. To minimize this force, we propose a method based on induction of surface or probe vibrations to detect contact between cantilever probe tip and sample substrate. To illustrate the effectiveness of the method, we report experimental results for contact detection on a PS-LDPE-12M polymer sample. A topography tracking control algorithm based on the proposed contact detection scheme is also presented.},
keywords = {Algorithms, Control Theory, Experimentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}
2016

Bo Jiang; Aramazd Muzhikyan; Amro M Farid; Kamal Youcef-Toumi
Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches Journal Article
In: Applied Energy, vol. 187, pp. 833-846, 2016, ISSN: 0306-2619.
Abstract | Links | BibTeX | Tags: Algorithms, Control Theory, Experimentation, Robot operated modular fixtures, Robotics & Automation, Simulation
@article{MRL_AFM_Comparison_Industrial_Social_Welfare,
title = {Demand side management in power grid enterprise control: A comparison of industrial & social welfare approaches},
author = {Bo Jiang and Aramazd Muzhikyan and Amro M Farid and Kamal Youcef-Toumi},
url = {https://www.sciencedirect.com/science/article/pii/S0306261916315410},
doi = {https://doi.org/10.1016/j.apenergy.2016.10.096},
issn = {0306-2619},
year = {2016},
date = {2016-10-25},
journal = {Applied Energy},
volume = {187},
pages = {833-846},
publisher = {ScienceDirect},
abstract = {Despite the recognized importance of demand side management (DSM) for mitigating the impact of variable energy resources and reducing the system costs, the academic and industrial literature have taken divergent approaches to DSM implementation. The prequel to this paper has demonstrated that the netload baseline inflation – a feature particular to the industrial DSM unit commitment formulation – leads to higher and costlier day-ahead scheduling compared to the academic social welfare method. This paper now expands this analysis from a single optimization problem to the full power grid enterprise control with its multiple control layers at their associated time scales. These include unit commitment, economic dispatch and regulation services. It compares the two DSM formulations and quantifies the technical and economic impacts of industrial baseline errors in the day-ahead and real-time markets. The paper concludes that the presence of baseline errors – present only in the industrial model – leads to a cascade of additional system imbalances and costs as compared to the social welfare model. A baseline error introduced in the unit commitment problem will increase costs not just in the day-ahead market, but will also introduce a greater netload error residual in the real-time market causing additional cost and imbalances. These imbalances if left unmitigated degrade system reliability or otherwise require costly regulating reserves to achieve the same performance. An additional baseline error introduced in the economic dispatch further compounds this cascading effect with additional costs in the real-time market, amplified downstream imbalances, and further regulation capacity for its mitigation.},
keywords = {Algorithms, Control Theory, Experimentation, Robot operated modular fixtures, Robotics & Automation, Simulation},
pubstate = {published},
tppubtype = {article}
}

Iman Soltani Bozchalooi; Andrew Careaga Houck; Jwaher M. AlGhamdi; Kamal Youcef-Toumi
Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging Journal Article
In: vol. 160, pp. 213 - 224, 2016, ISSN: 0304-3991.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Simulation, Visualization
@article{MRL_AFM_LRHS_imaging,
title = {Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging},
author = {Iman Soltani Bozchalooi and Andrew Careaga Houck and Jwaher M. AlGhamdi and Kamal Youcef-Toumi},
url = {http://www.sciencedirect.com/science/article/pii/S0304399115300528 https://www.youtube.com/watch?v=PQ-zE6wA61c},
doi = {https://doi.org/10.1016/j.ultramic.2015.10.016},
issn = {0304-3991},
year = {2016},
date = {2016-01-01},
volume = {160},
pages = {213 - 224},
abstract = {This paper presents the design and control of a high-speed and large-range atomic force microscopy (AFM). A multi-actuation scheme is proposed where several nano-positioners cooperate to achieve the range and speed requirements. A simple data-based control design methodology is presented to effectively operate the AFM scanner components. The proposed controllers compensate for the coupled dynamics and divide the positioning responsibilities between the scanner components. As a result, the multi-actuated scanner behavior is equivalent to that of a single X–Y–Z positioner with large range and high speed. The scanner of the designed AFM is composed of five nano-positioners, features 6μm out-of-plane and 120μm lateral ranges and is capable of high-speed operation. The presented AFM has a modular design with laser spot size of 3.5μm suitable for small cantilever, an optical view of the sample and probe, a conveniently large waterproof sample stage and a 20MHz data throughput for high resolution image acquisition at high imaging speeds. This AFM is used to visualize etching of calcite in a solution of sulfuric acid. Layer-by-layer dissolution and pit formation along the crystalline lines in a low pH environment is observed in real time.},
keywords = {Control Theory, Experimentation, Fabrication, Instrumentation, Mechatronic Design, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Simulation, Visualization},
pubstate = {published},
tppubtype = {article}
}
2015

You Wu; Antoine Noel; David Donghyun Kim; Kamal Youcef-Toumi; Rached Ben-Mansour
Design of a maneuverable swimming robot for in-pipe missions Proceedings Article
In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4864-4871, IEEE IEEE, 2015, ISBN: 978-1-4799-9994-1.
Abstract | Links | BibTeX | Tags: Experimentation, Inspection; repair and intelligence for water distribution pipes, intelligent systems, Physical System Modeling, Simulation, Visualization
@inproceedings{MRL_WDP_In_Pipe_Missions,
title = {Design of a maneuverable swimming robot for in-pipe missions},
author = {You Wu and Antoine Noel and David Donghyun Kim and Kamal Youcef-Toumi and Rached Ben-Mansour},
url = {https://ieeexplore.ieee.org/document/7354061},
doi = {10.1109/IROS.2015.7354061},
isbn = {978-1-4799-9994-1},
year = {2015},
date = {2015-12-17},
booktitle = {2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
pages = {4864-4871},
publisher = {IEEE},
organization = {IEEE},
abstract = {Autonomous underwater robots provide opportunities to perform missions in confined environments such as water pipe networks. They can carry sensors in these pipes and perform tasks such as mapping and inspection. Those robots must have a high level of maneuverability in order to navigate through complex networks of pipes with irregularities due to rust and calcite deposition. We propose a fully integrated, untethered robot capable of carrying sensors and maneuver into water pipe networks. The objective of this paper is to present (i) the optimal shape design and (ii) a propulsion system selection and sizing procedure for such robots. A prototype is built to demonstrate the basic elements of maneuverability, including following straight lines and making sharp turns.},
keywords = {Experimentation, Inspection; repair and intelligence for water distribution pipes, intelligent systems, Physical System Modeling, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

Amro M Farid; Bo Jiang; Aramazd Muzhikyan; Kamal Youcef-Toumi
The need for holistic enterprise control assessment methods for the future electricity grid Journal Article
In: Renewable and Sustainable Energy Reviews, vol. 56, pp. 669-685, 2015, ISSN: 1364-0321.
Abstract | Links | BibTeX | Tags: Algorithms, Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Physical System Modeling, Simulation
@article{MRL_AFM_Holistic_Assessment_Electricity_Grid,
title = {The need for holistic enterprise control assessment methods for the future electricity grid},
author = {Amro M Farid and Bo Jiang and Aramazd Muzhikyan and Kamal Youcef-Toumi},
url = {https://www.sciencedirect.com/science/article/pii/S1364032115012599},
doi = {https://doi.org/10.1016/j.rser.2015.11.007},
issn = {1364-0321},
year = {2015},
date = {2015-12-17},
journal = {Renewable and Sustainable Energy Reviews},
volume = {56},
pages = {669-685},
publisher = {elsevier},
abstract = {Recently, the academic and industrial literature has coalesced around an enhanced vision of the electric power grid that is responsive, dynamic, adaptive and flexible. As driven by decarbonization, reliability, transportation electrification, consumer participation and deregulation, this future grid will undergo technical, economic and regulatory changes to bring about the incorporation of renewable energy and incentivized demand side management and control. As a result, the power grid will experience fundamental changes in its physical system structure and behavior that will consequently require enhanced and integrated control, automation, and IT-driven management functions in what is called enterprise control. While these requirements will open a plethora of opportunities for new control technologies, many of these solutions are largely overlapping in function. Their overall contribution to holistic techno-economic control objectives and their underlying dynamic properties are less than clear. Piece-meal integration and a lack of coordinated assessment could bring about costly-overbuilt solutions or even worse unintended reliability consequences. This work, thus, reviews these existing trends in the power grid evolution. It then motivates the need for holistic methods of integrated assessment that manage the diversity of control solutions against their many competing objectives and contrasts these requirements to existing variable energy resource integration studies. The work concludes with a holistic framework for “enterprise control” assessment of the future power grid and suggests directions for future work.},
keywords = {Algorithms, Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {article}
}

Bo Jiang; Amro M Farid; Kamal Youcef-Toumi
Impacts of Industrial Baseline Errors on Costs and Social Welfare in the Demand Side Management of Day-Ahead Wholesale Markets Proceedings Article
In: ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum, pp. 7390-7395, IEEE IEEE, 2015, ISSN: 1558-3783.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Nanotechnology, Physical System Modeling, Simulation, Visualization
@inproceedings{MRL_WDP_Pipe_Leak_Repair,
title = {Impacts of Industrial Baseline Errors on Costs and Social Welfare in the Demand Side Management of Day-Ahead Wholesale Markets},
author = {Bo Jiang and Amro M Farid and Kamal Youcef-Toumi},
url = {https://asmedigitalcollection.asme.org/ES/proceedings/ES2015/56857/V002T12A003/230063},
doi = {https://doi.org/10.1115/ES2015-49459},
issn = {1558-3783},
year = {2015},
date = {2015-10-27},
booktitle = {ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum},
journal = {IEEE Transactions on Automation Science and Engineering},
volume = {15},
number = {4},
pages = {7390-7395},
publisher = {IEEE},
organization = {IEEE},
abstract = {Demand Side Management (DSM},
keywords = {Control Theory, Experimentation, Nanotechnology, Physical System Modeling, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

Hadi Nia; Lin Han; Iman Soltani; Peter Roughley; Kamal Youcef-Toumi; Alan Grodzinsky; Christine Ortiz
Aggrecan Nanoscale Solid–Fluid Interactions Are a Primary Determinant of Cartilage Dynamic Mechanical Properties Journal Article
In: ACS nano, vol. 9, 2015, ISSN: 2614-2625.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling
@article{MRL_AFM_Agreecan_Nanoscale_Solid,
title = {Aggrecan Nanoscale Solid–Fluid Interactions Are a Primary Determinant of Cartilage Dynamic Mechanical Properties},
author = {Hadi Nia and Lin Han and Iman Soltani and Peter Roughley and Kamal Youcef-Toumi and Alan Grodzinsky and Christine Ortiz},
doi = {10.1021/nn5062707},
issn = {2614-2625},
year = {2015},
date = {2015-03-10},
journal = {ACS nano},
volume = {9},
publisher = {ACS},
abstract = {Poroelastic interactions between interstitial fluid and the extracellular
matrix of connective tissues are critical to biological and pathophysiological functions
involving solute transport, energy dissipation, self-stiffening and lubrication. However,
the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the
broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is
revealed for the first time, including the equilibrium and instantaneous moduli and the
peak in the phase angle of the complex modulus. By performing a length scale study
and comparing the experimental results to theoretical predictions, we confirm that the
mechanism underlying the observed dynamic nanomechanics is due to solidfluid
interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ( 2.8) 1015 m4
/N 3 s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue
but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic
interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular
behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than
the aggrecan from newborn human tissue.},
keywords = {Experimentation, Fabrication, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling},
pubstate = {published},
tppubtype = {article}
}
matrix of connective tissues are critical to biological and pathophysiological functions
involving solute transport, energy dissipation, self-stiffening and lubrication. However,
the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the
broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is
revealed for the first time, including the equilibrium and instantaneous moduli and the
peak in the phase angle of the complex modulus. By performing a length scale study
and comparing the experimental results to theoretical predictions, we confirm that the
mechanism underlying the observed dynamic nanomechanics is due to solidfluid
interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ( 2.8) 1015 m4
/N 3 s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue
but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic
interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular
behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than
the aggrecan from newborn human tissue.
2014

David Donghyun Kim; You Wu; Antoine Noel; Kamal Youcef-Toumi
RIM Propeller for Micro Autonomous Underwater Vehicles Proceedings Article
In: ASME 2014 Dynamic Systems and Control Conference, ASME ASME, 2014, ISBN: 978-0-7918-4620-9.
Abstract | Links | BibTeX | Tags: Computer vision for autonomous vehicle sensing, Control Theory, Experimentation, Fabrication, intelligent systems, Mechatronic Design, Simulation
@inproceedings{MRL_AVS_AUV_RIM_Control,
title = {RIM Propeller for Micro Autonomous Underwater Vehicles},
author = {David Donghyun Kim and You Wu and Antoine Noel and Kamal Youcef-Toumi},
url = {https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2014/46209/V003T44A005/229722},
doi = {10.1115/DSCC2014-6282},
isbn = {978-0-7918-4620-9},
year = {2014},
date = {2014-12-19},
booktitle = {ASME 2014 Dynamic Systems and Control Conference},
publisher = {ASME},
organization = {ASME},
abstract = {Micro autonomous underwater vehicles (AUVs) need small-scale, powerful and safe propulsion systems especially when they are performing missions in pipes and other confined environments. However, the most conventional propulsion systems do not satisfy all three requirements: small, powerful and safe. A micro propulsion system meeting those requirements are developed based on the RIM propeller concept. It is compact and powerful; the complete motor-propeller assembly is 33mm in diameter, 12mm in depth and 16g in weight, and it is capable of producing 0.4N thrust in static water given a 7.1W power input. The paper presents the design, manufacturing and integration of the micro RIM propeller in an AUV.},
keywords = {Computer vision for autonomous vehicle sensing, Control Theory, Experimentation, Fabrication, intelligent systems, Mechatronic Design, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}

B N Shapiro; R Adhikari; J Driggers; J Kissel; B Lantz; J Rollins; K Youcef-Toumi
Noise and control decoupling of Advanced LIGO suspensions Journal Article
In: Classical and Quantum Gravity, vol. 32, no. 1, pp. 015004, 2014.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, intelligent systems, Physical System Modeling, Simulation, Uncertainty estimation and calibration for modeling, Visualization
@article{MRL_AFM_Noise_Control_Decoupling,
title = {Noise and control decoupling of Advanced LIGO suspensions},
author = {B N Shapiro and R Adhikari and J Driggers and J Kissel and B Lantz and J Rollins and K Youcef-Toumi},
url = {https://doi.org/10.1088/0264-9381/32/1/015004},
doi = {10.1088/0264-9381/32/1/015004},
year = {2014},
date = {2014-12-10},
journal = {Classical and Quantum Gravity},
volume = {32},
number = {1},
pages = {015004},
publisher = {IOP Publishing},
abstract = {Ground-based interferometric gravitational wave observatories such as Advanced LIGO must isolate their optics from ground vibrations with suspension systems to meet their stringent noise requirements. These suspensions typically have very high quality-factor resonances that require active damping. The sensor noise associated with this damping is a potential significant contributor to the sensitivity of these interferometers. This paper introduces a novel scheme for suspension damping that isolates much of this noise and permits greater amounts of damping. It also decouples the damping feedback design from the interferometer control. The scheme works by invoking a change from a local coordinate frame associated with each suspension, to a coordinate frame aligned with the interferometric readout. In this way, degrees of freedom invisible to the readout can employ effective, but noisy damping. The degree of freedom measured by the readout is then damped using low noise interferometer signals, eliminating the need to use the usual noisy sensors. Simulated and experimental results validate the concepts presented in this paper.},
keywords = {Control Theory, Experimentation, intelligent systems, Physical System Modeling, Simulation, Uncertainty estimation and calibration for modeling, Visualization},
pubstate = {published},
tppubtype = {article}
}

Reshma C Francy; Amro M Farid; Kamal Youcef-Toumi
Event triggered state estimation techniques for power systems with integrated variable energy resources Journal Article
In: ISA transactions, vol. 56, pp. 165—172, 2014, ISSN: 0019-0578.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Physical System Modeling, Simulation
@article{MRL_AFM_State_Estimation_Power,
title = {Event triggered state estimation techniques for power systems with integrated variable energy resources},
author = {Reshma C Francy and Amro M Farid and Kamal Youcef-Toumi},
url = {https://doi.org/10.1016/j.isatra.2014.11.001},
doi = {10.1016/j.isatra.2014.11.001},
issn = {0019-0578},
year = {2014},
date = {2014-11-24},
journal = {ISA transactions},
volume = {56},
pages = {165—172},
abstract = {For many decades, state estimation (SE) has been a critical technology for energy management systems utilized by power system operators. Over time, it has become a mature technology that provides an accurate representation of system state under fairly stable and well understood system operation. The integration of variable energy resources (VERs) such as wind and solar generation, however, introduces new fast frequency dynamics and uncertainties into the system. Furthermore, such renewable energy is often integrated into the distribution system thus requiring real-time monitoring all the way to the periphery of the power grid topology and not just the (central) transmission system. The conventional solution is two fold: solve the SE problem (1) at a faster rate in accordance with the newly added VER dynamics and (2) for the entire power grid topology including the transmission and distribution systems. Such an approach results in exponentially growing problem sets which need to be solver at faster rates. This work seeks to address these two simultaneous requirements and builds upon two recent SE methods which incorporate event-triggering such that the state estimator is only called in the case of considerable novelty in the evolution of the system state. The first method incorporates only event-triggering while the second adds the concept of tracking. Both SE methods are demonstrated on the standard IEEE 14-bus system and the results are observed for a specific bus for two difference scenarios: (1) a spike in the wind power injection and (2) ramp events with higher variability. Relative to traditional state estimation, the numerical case studies showed that the proposed methods can result in computational time reductions of 90. These results were supported by a theoretical discussion of the computational complexity of three SE techniques. The work concludes that the proposed SE techniques demonstrate practical improvements to the computational complexity of classical state estimation. In such a way, state estimation can continue to support the necessary control actions to mitigate the imbalances resulting from the uncertainties in renewables.},
keywords = {Control Theory, Experimentation, intelligent systems, Modeling; sizing and control for smart grids, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {article}
}

Dimitris Chatzigeorgiou; Kamal Youcef-Toumi; Rached Ben-Mansour
Detection estimation algorithms for in-pipe leak detection Proceedings Article
In: 2014 American Control Conference, pp. 5508-5514, 2014, ISBN: 978-1-4799-3274-0.
Abstract | Links | BibTeX | Tags: Algorithms, Control Theory, Experimentation, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics and Automation, Simulation
@inproceedings{MRL_WDP_Estimation_Algorithms,
title = {Detection estimation algorithms for in-pipe leak detection},
author = {Dimitris Chatzigeorgiou and Kamal Youcef-Toumi and Rached Ben-Mansour},
url = {https://ieeexplore.ieee.org/document/6859203},
doi = {10.1109/ACC.2014.6859203},
isbn = {978-1-4799-3274-0},
year = {2014},
date = {2014-07-21},
booktitle = {2014 American Control Conference},
pages = {5508-5514},
abstract = {Leakage is the most important factor for unaccounted losses in any pipe network around the world. However, most state of the art leak detection systems have limited applicability, lack in reliability and/or depend on user experience for data interpretation. In this paper we present a new, autonomous, in-pipe, leak detection system. The detection principle is based on the presence of a pressure gradient in the neighborhood of a leak in a pressurized pipe. This phenomenon is translated into force measurements via a carefully designed and instrumented mechanical embodiment (MIT Leak Detector). We then introduce a detection and estimation scheme. The latter one allows not only for the reliable detection, but also for the estimation of the incidence angle and the magnitude of the forces that are associated with the leak. Finally, a prototype is built and experiments in pipes are conducted to demonstrate the efficacy of the proposed methodology.},
keywords = {Algorithms, Control Theory, Experimentation, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics and Automation, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}

Soltani I Bozchalooi; Kamal Youcef-Toumi
Control design for division and compensation with application to high-speed/large-range nano-positioning Proceedings Article
In: 2014 American Control Conference, pp. 1643-1648, IEEE IEEE, 2014, ISBN: 978-1-4799-3274-0.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation, Visualization
@inproceedings{MRL_AFM_Nano_Positioning_Control,
title = {Control design for division and compensation with application to high-speed/large-range nano-positioning},
author = {Soltani I Bozchalooi and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/6859262},
doi = {10.1109/ACC.2014.6859262},
isbn = {978-1-4799-3274-0},
year = {2014},
date = {2014-07-21},
booktitle = {2014 American Control Conference},
pages = {1643-1648},
publisher = {IEEE},
organization = {IEEE},
abstract = {In this paper an easy to implement control design strategy is proposed to achieve large range and high speed nano-positioning. The designed controllers aim to divide the positioning task between multiple large range/low speed and small range/high speed nano-positioners. Each controller assigns the proper frequency range to individual nano-positioners, and simultaneously compensates for the corresponding excited dynamics at high positioning speeds. Control design is formulated in the form of several single input-single output (SISO) system identification problems. The proposed approach removes the need for fundamental changes in the design of the conventional scanners such as piezo tubes for applications necessitating high speed and large range nano-positioning.},
keywords = {Control Theory, Experimentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

D Chatzigeorgiou; K Youcef-Toumi; R Ben-Mansour
Design of a Novel In-Pipe Reliable Leak Detector Journal Article
In: IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 824-833, 2014, ISSN: 1941-014X.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Inspection, Physical System Modeling, repair & intelligence for water distribution pipes, Robotics & Automation
@article{MRL_AFM_Leak_Detector,
title = {Design of a Novel In-Pipe Reliable Leak Detector},
author = {D Chatzigeorgiou and K Youcef-Toumi and R Ben-Mansour},
url = {https://ieeexplore.ieee.org/document/6778062?arnumber=6778062},
doi = {10.1109/TMECH.2014.2308145},
issn = {1941-014X},
year = {2014},
date = {2014-03-25},
journal = {IEEE/ASME Transactions on Mechatronics},
volume = {20},
number = {2},
pages = {824-833},
publisher = {IEEE},
abstract = {Leakage is the major factor for unaccounted losses in every pipe network around the world (oil, gas, or water). In most cases, the deleterious effects associated with the occurrence of leaks may present serious economical and health problems. Therefore, leaks must be quickly detected, located, and repaired. Unfortunately, most state-of-the-art leak detection systems have limited applicability, are neither reliable nor robust, while others depend on the user experience. In this paper, we present a new in-pipe leak detection system. It performs autonomous leak detection in pipes and, thus, eliminates the need for the user experience. This paper focuses on the detection module and its main characteristics. Detection in based on the presence of a pressure gradient in the neighborhood of the leak. Moreover, the proposed detector can sense leaks at any angle around the circumference of the pipe with only two sensors. We validate the concepts by building a prototype and evaluate the system's performance under real conditions in an experimental laboratory setup.},
keywords = {Control Theory, Experimentation, Inspection, Physical System Modeling, repair & intelligence for water distribution pipes, Robotics & Automation},
pubstate = {published},
tppubtype = {article}
}

Iman Soltani Bozchalooi; Kamal Youcef-Toumi
Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy Journal Article
In: Ültramicroscopy, vol. 146, pp. 117 - 124, 2014, ISSN: 0304-3991.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation
@article{MRL_AFM_Multi_PI_control,
title = {Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy},
author = {Iman Soltani Bozchalooi and Kamal Youcef-Toumi},
url = {http://www.sciencedirect.com/science/article/pii/S0304399114001491},
doi = {https://doi.org/10.1016/j.ultramic.2014.07.010},
issn = {0304-3991},
year = {2014},
date = {2014-01-01},
journal = {Ültramicroscopy},
volume = {146},
pages = {117 - 124},
abstract = {High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid.},
keywords = {Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {article}
}
2013

Ajay Deshpande; Sanjay E Sarma; Kamal Youcef-Toumi; Samir Mekid
Optimal coverage of an infrastructure network using sensors with distance-decaying sensing quality Journal Article
In: Automatica, vol. 49, no. 11, pp. 3351-3358, 2013, ISSN: 0005-1098.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Instrumentation, Mechatronic Design, Modeling; sizing and control of smart grids, Physical System Modeling
@article{MRL_AFM_Distance_Decaying_Sensors,
title = {Optimal coverage of an infrastructure network using sensors with distance-decaying sensing quality},
author = {Ajay Deshpande and Sanjay E Sarma and Kamal Youcef-Toumi and Samir Mekid},
url = {https://www.sciencedirect.com/science/article/pii/S0005109813003774},
doi = {https://doi.org/10.1016/j.automatica.2013.07.029},
issn = {0005-1098},
year = {2013},
date = {2013-08-27},
journal = {Automatica},
volume = {49},
number = {11},
pages = {3351-3358},
publisher = {elsevier},
abstract = {Motivated by recent applications of wireless sensor networks in monitoring infrastructure networks, we address the problem of optimal coverage of infrastructure networks using sensors whose sensing performance decays with distance. We show that this problem can be formulated as a continuous p-median problem on networks. The literature has addressed the discrete p-median problem on networks and in continuum domains, and the continuous p-median problem in continuum domains extensively. However, in-depth analysis of the continuous p-median problem on networks has been lacking. With the sensing performance model that decays with distance, each sensor covers a region equivalent to its Voronoi partition on the network in terms of the shortest path distance metric. Using Voronoi partitions, we define a directional partial derivative of the coverage metric with respect to a sensor’s location. We then propose a gradient descent algorithm to obtain a locally optimal solution with guaranteed convergence. The quality of an optimal solution depends on the choice of the initial configuration of sensors. We obtain an initial configuration using two approaches: by solving the discrete p-median problem on a lumped network and by random sampling. We consider two methods of random sampling: uniform sampling and D2-sampling. The first approach with the initial solution of the discrete p-median problem leads to the best coverage performance for large networks, but at the cost of high running time. We also observe that the gradient descent on the initial solution with the D2-sampling method yields a solution that is within at most 7% of the previous solution and with much shorter running time.},
keywords = {Experimentation, Fabrication, Instrumentation, Mechatronic Design, Modeling; sizing and control of smart grids, Physical System Modeling},
pubstate = {published},
tppubtype = {article}
}

Changrak Choi; Kamal Youcef-Toumi
Robot design for high flow liquid pipe networks Proceedings Article
In: 2013 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), pp. 246-251, IEEE IEEE, 2013.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics & Automation, Simulation
@inproceedings{MRL_WDP_High_Flow_Pipe_Robot,
title = {Robot design for high flow liquid pipe networks},
author = {Changrak Choi and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6696360&isnumber=6696319},
doi = {10.1109/IROS.2013.6696360},
year = {2013},
date = {2013-01-01},
booktitle = {2013 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS)},
pages = {246-251},
publisher = {IEEE},
organization = {IEEE},
abstract = {In-pipe robots are important for inspection of pipe network that form vital infrastructure of modern society. Nevertheless, most in-pipe robots developed so far are targeted at working inside gas pipes and not suitable for liquid pipes. This paper presents a new approach for designing in-pipe robot to work inside a liquid environment in the presence of high drag forces. Three major subsystems - propulsion, braking, and turning - are described in detail with new concepts and mechanisms that differ from conventional in-pipe robots. Prototypes of each subsystem are designed, built and tested for validation. Resulting is a robot design that navigates efficiently inside liquid pipe network and can be used for practical inspection purposes.},
keywords = {Experimentation, Fabrication, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics & Automation, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}
2012

Brett Shapiro; Nergis Mavalvala; Kamal Youcef-Toumi
Modal damping of a quadruple pendulum for advanced gravitational wave detectors Proceedings Article
In: 2012 American Control Conference (ACC), pp. 1017-1022, ACC ACC, 2012, ISBN: 978-1-4577-1096-4.
Abstract | Links | BibTeX | Tags: Control Theory, Data-driven learning for intelligent machine maintanence, Experimentation, Fabrication, intelligent systems, Physical System Modeling, Simulation
@inproceedings{MRL_DDL_Gravity_Wave_Detectors,
title = {Modal damping of a quadruple pendulum for advanced gravitational wave detectors},
author = {Brett Shapiro and Nergis Mavalvala and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/6315185},
doi = {10.1109/ACC.2012.6315185},
isbn = {978-1-4577-1096-4},
year = {2012},
date = {2012-10-02},
booktitle = {2012 American Control Conference (ACC)},
pages = {1017-1022},
publisher = {ACC},
organization = {ACC},
abstract = {The Laser Interferometer Gravitational-Wave Observatory (LIGO) has begun a major set of upgrades to reach a sensitivity better than 10-19 m/√(Hz) in the 10Hz to 10 kHz frequency band. This advance is expected to bring gravitational wave observations of relativistic astrophysical events such as black hole mergers and supernovae into the realm of regular astronomy. These upgrades require complex vibration isolation systems to better decouple the test masses from ground disturbances. These high performance systems require correspondingly more complex and aggressive active control loops to meet the increased demand in instrument sensitivity. This paper applies a modal damping technique with state estimation to optimize the trade-off between disturbance rejection and sensor noise amplification. The state estimator design applies a customized cost function around the Linear Quadratic Regulator (LQR) algorithm.},
keywords = {Control Theory, Data-driven learning for intelligent machine maintanence, Experimentation, Fabrication, intelligent systems, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}

Soltani I Bozchalooi; Kamal Youcef-Toumi; D J Burns; Georg E Fantner
A vibration suppression approach to high-speed atomic force microscopy Proceedings Article
In: 2012 American Control Conference (ACC), pp. 3797-3802, ACC ACC, 2012, ISBN: 978-1-4577-1096-4.
Abstract | Links | BibTeX | Tags: Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation, Visualization
@inproceedings{MRL_AFM_Vibration_Suppression,
title = {A vibration suppression approach to high-speed atomic force microscopy},
author = {Soltani I Bozchalooi and Kamal Youcef-Toumi and D J Burns and Georg E Fantner},
url = {https://ieeexplore.ieee.org/document/6315281},
doi = {10.1109/ACC.2012.6315281},
isbn = {978-1-4577-1096-4},
year = {2012},
date = {2012-10-02},
booktitle = {2012 American Control Conference (ACC)},
pages = {3797-3802},
publisher = {ACC},
organization = {ACC},
abstract = {The possibility of many new applications and novel scientific observations can be provided by efficient and reliable high-speed atomic force microscopy techniques. However, the reliability of the AFM images decreases significantly as the imaging speed is increased to levels required for the targeted real-time observation of nano-scale phenomenon. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds. In this research we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. The information required for compensator design is extracted from the cantilever deflection signal hence, eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.},
keywords = {Control Theory, Experimentation, Instrumentation, Nanoscale video imaging for dynamic process visualization, Nanotechnology, Physical System Modeling, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}

C Choi; D Chatzigeorgiou; R Ben-Mansour; K Youcef-Toumi
Design and analysis of novel friction controlling mechanism with minimal energy for in-pipe robot applications Proceedings Article
In: 2012 IEEE International Conference on Robotics and Automation, pp. 4118-4123, IEEE IEEE, 2012, ISBN: 978-1-4673-1405-3.
Abstract | Links | BibTeX | Tags: Experimentation, Fabrication, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics and Automation, Simulation, Visualization
@inproceedings{MRL_WDP_Friction_Minimization,
title = {Design and analysis of novel friction controlling mechanism with minimal energy for in-pipe robot applications},
author = {C Choi and D Chatzigeorgiou and R Ben-Mansour and K Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/6225380},
doi = {10.1109/ICRA.2012.6225380},
isbn = {978-1-4673-1405-3},
year = {2012},
date = {2012-06-28},
booktitle = {2012 IEEE International Conference on Robotics and Automation},
pages = {4118-4123},
publisher = {IEEE},
organization = {IEEE},
abstract = {In-pipe wheeled robots require friction on the wheels to maintain traction. Ability to vary this friction is highly desirable but conventionally used linkage mechanism is not suitable for it. This paper presents a novel mechanism generating adjustable friction with minimal energy consumption for in-pipe robots. The mechanism uses permanent magnets to achieve the objective. An appropriate model for the system is also presented and discussed. The paper identifies the important design parameters, and more importantly establishes the relation between the design parameters and the system's performance. In addition, a prototype of the mechanism was designed, fabricated and tested for validation.},
keywords = {Experimentation, Fabrication, Inspection; repair and intelligence for water distribution pipes, Physical System Modeling, Robotics and Automation, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}
2011

Brett Shapiro; Nergis Mavalvala; Kamal Youcef-Toumi
Actuator sizing of a quadruple pendulum for advanced gravitational wave detectors Proceedings Article
In: Proceedings of the 2011 American Control Conference, pp. 1358-1363, ACC ACC, 2011, ISBN: 978-1-4577-0081-1.
Abstract | Links | BibTeX | Tags: Control Theory, Data-driven learning for intelligent machine maintanence, Experimentation, Fabrication, intelligent systems, Physical System Modeling, Simulation
@inproceedings{MRL_DDL_Actuator_Sizing_Pendulum,
title = {Actuator sizing of a quadruple pendulum for advanced gravitational wave detectors},
author = {Brett Shapiro and Nergis Mavalvala and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/5991170},
doi = {10.1109/ACC.2011.5991170},
isbn = {978-1-4577-0081-1},
year = {2011},
date = {2011-08-18},
booktitle = {Proceedings of the 2011 American Control Conference},
pages = {1358-1363},
publisher = {ACC},
organization = {ACC},
abstract = {The Laser Interferometer Gravitational-Wave Observatory (LIGO) has begun a major set of upgrades to reach a sensitivity better than 10-19 m/√(Hz) in the 10 Hz to 10 kHz frequency band. This advance is expected to bring gravitational wave observations of relativistic astrophysical events such as black hole mergers and supernovae into the realm of regular astronomy. These upgrades require complex vibration isolation systems to better decouple the test masses from ground disturbances. These high performance systems require correspondingly more complex and aggressive active control loops to meet the increased demand in instrument sensitivity. Appropriately sized actuators are essential to achieving the necessary control performance while limiting the cost, noise, and complexity associated with larger actuators. This paper applies the plant's pseudoinverse transfer function to analyze the least squares dynamic range required by the actuators to reject the stochastic disturbances exciting the Advanced LIGO quadruple pendulum isolation systems.},
keywords = {Control Theory, Data-driven learning for intelligent machine maintanence, Experimentation, Fabrication, intelligent systems, Physical System Modeling, Simulation},
pubstate = {published},
tppubtype = {inproceedings}
}
2010

Pablo Valdivia y Alvarado; Stephanie Chin; Winston Larson; Anirban Mazumdar; Kamal Youcef-Toumi
A soft body under-actuated approach to multi degree of freedom biomimetic robots: A stingray example Proceedings Article
In: 2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 473-478, IEEE IEEE, 2010, ISBN: 978-1-4244-7709-8.
Abstract | Links | BibTeX | Tags: Biomimetic robotic fish for underwater monitoring, Experimentation, Mechatronic Design, Physical System Modeling, Robotics and Automation, Simulation, Visualization
@inproceedings{MRL_BRF_Multi_DOF_Stingray,
title = {A soft body under-actuated approach to multi degree of freedom biomimetic robots: A stingray example},
author = {Pablo Valdivia y Alvarado and Stephanie Chin and Winston Larson and Anirban Mazumdar and Kamal Youcef-Toumi},
url = {https://ieeexplore.ieee.org/document/5627803},
doi = {10.1109/BIOROB.2010.5627803},
isbn = {978-1-4244-7709-8},
year = {2010},
date = {2010-11-11},
booktitle = {2010 3rd IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics},
pages = {473-478},
publisher = {IEEE},
organization = {IEEE},
abstract = {In this paper we present a new application of the methodology our group is developing to design and prototype under-actuated biomimetic robots by determining appropriate body material property distributions. When excited, flexible bodies with proper anisotropic material distributions display modes of vibration that mimic required locomotion kinematics and require minimal actuation. Our previous prototypes explored simple two dimensional applications for fish-like swimming. In this paper, the three dimensional vibrational kinematics of a stingray are explored. A simple design is explained, and corresponding prototypes are presented along with preliminary performance data. Our methodology shows great promise to develop simple, robust, and inexpensive mobile robots that can efficiently accomplish locomotion.},
keywords = {Biomimetic robotic fish for underwater monitoring, Experimentation, Mechatronic Design, Physical System Modeling, Robotics and Automation, Simulation, Visualization},
pubstate = {published},
tppubtype = {inproceedings}
}